69 research outputs found

    Discovery of X-ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

    Get PDF
    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ~ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high temperature (kT ~ 3.4 keV) component with a very low ionization timescale (~ 2.7e9 cm^{-3}s), or a hard non-thermal component with a photon index Gamma~2.3. The average density of the low-temperature plasma is rather low, of the order of 10^{-3}--10^{-2} cm^{-3}, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.Comment: 20 pages, 14 figures, ApJ, in pres

    F Prime: An Open-Source Framework for Small-Scale Flight Software Systems

    Get PDF
    Developing flight software for small-scale missions such as CubeSats and SmallSats is challenging. These missions typically have ambitious goals, modest budgets, and tight schedules. To meet these challenges, a good flight software framework is essential. Frameworks can provide an architecture, infrastructure, tools, and reusable software components, all of which can help developers deliver their code on time and on budget. In this paper we present F Prime, a free, open-source flight software framework developed at JPL and tailored to small-scale systems such as CubeSats, SmallSats, and instruments. F Prime comprises several elements: (1) an architecture that decomposes flight software into discrete components with well-defined interfaces; (2) a C++ framework that provides core capabilities such as message queues and threads; (3) tools for specifying components and connections and automatically generating code; (4) a growing collection of ready-to-use components; and (5) tools for testing flight software at the unit and integration levels. We describe the F Prime framework and tools and present our experience using them. We describe several enhancements to the framework currently underway in the areas of software design, software verification, and ground data systems for testing

    Suzaku Detection of Diffuse Hard X-Ray Emission outside Vela X

    Get PDF
    Vela X is a large, 3x2 degrees, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma~2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.Comment: 18 pages, 7 figures, accepted for publication in PASJ (Suzaku Special Issue

    Industry Best Practices in Robotics Software Engineering

    Full text link
    Robotics software is pushing the limits of software engineering practice. The 3rd International Workshop on Robotics Software Engineering held a panel on "the best practices for robotic software engineering". This article shares the key takeaways that emerged from the discussion among the panelists and the workshop, ranging from architecting practices at the NASA/Caltech Jet Propulsion Laboratory, model-driven development at Bosch, development and testing of autonomous driving systems at Waymo, and testing of robotics software at XITASO. Researchers and practitioners can build on the contents of this paper to gain a fresh perspective on their activities and focus on the most pressing practices and challenges in developing robotics software today.Comment: 10 pages, 0 figure

    ASCA Observations of the Supernova Remnant IC 443: Thermal Structure and Detection of Overionized Plasma

    Get PDF
    We present the results of X-ray spatial and spectral studies of the ``mixed-morphology'' supernova remnant IC 443 using ASCA. IC 443 has a center-filled image in X-ray band, contrasting with the shell-like appearance in radio and optical bands. The overall X-ray emission is thermal, not from a synchrotron nebula. ASCA observed IC 443 three times, covering the whole remnant. From the image analysis, we found that the softness-ratio map reveals a shell-like structure. At the same time, its spectra require two (1.0 keV and 0.2 keV) plasma components; the emission of the 0.2 keV plasma is stronger in the region near the shell than the center. These results can be explained by a simple model that IC 443 has a hot (1.0 keV) interior surrounded by a cool (0.2 keV) outer shell. From the emission measures, we infer that the 0.2 keV plasma is denser than the 1.0 keV plasma, suggesting pressure equilibrium between the two. In addition, we found that the ionization temperature of sulfur, obtained from H-like Kα\alpha to He-like Kα\alpha intensity ratio, is 1.5 keV, significantly higher than the gas temperature of 1.0 keV suggested from the continuum spectrum. The same can be concluded for silicon. Neither an additional, hotter plasma component nor a multi-temperature plasma successfully accounts for this ratio, and we conclude that the 1.0 keV plasma is overionized. This is the first time that overionized gas has been detected in a SNR. For the gas to become overionized in the absence of a photoionizing flux, it must cool faster than the ions recombine. Thermal conduction from the 1.0 keV plasma to the 0.2 keV one could cause the 1.0 keV plasma to become overionized, which is plausible within an old (3×104\times10^4 yr) SNR.Comment: 11 pages, 15 figures, 2 tables, accepted for publication in The Astrophysical Journa

    Demonstrating high-precision photometry with a CubeSat: ASTERIA observations of 55 Cancri e

    Get PDF
    ASTERIA (Arcsecond Space Telescope Enabling Research In Astrophysics) is a 6U CubeSat space telescope (10 cm x 20 cm x 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stabilty thermal control. ASTERIA demonstrated 0.5 arcsecond RMS pointing stability and ±\pm10 milliKelvin thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in August 2017 and deployed from the International Space Station (ISS) November 2017. During the prime mission (November 2017 -- February 2018) and the first extended mission that followed (March 2018 - May 2018), ASTERIA conducted opportunistic science observations which included collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct CMOS detector column-dependent gain variations. A Markov Chain Monte Carlo (MCMC) approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (2\sim2~\Rearth), measuring a transit depth of 374±170374\pm170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.Comment: 23 pages, 9 figures. Accepted in A

    HD 219134 Revisited: Planet d Transit Upper Limit and Planet f Transit Nondetection with ASTERIA and TESS

    Get PDF
    HD 219134 is a K3V dwarf star with six reported radial-velocity discovered planets. The two innermost planets b and c show transits, raising the possibility of this system to be the nearest (6.53 pc), brightest (V = 5.57) example of a star with a compact multiple transiting planet system. Ground-based searches for transits of planets beyond b and c are not feasible because of the infrequent transits, long transit duration (~5 hr), shallow transit depths (<1%), and large transit time uncertainty (~half a day). We use the space-based telescopes the Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA) and the Transiting Exoplanet Survey Satellite (TESS) to search for transits of planets f (P = 22.717 days and M sin i = 7.3 ± 0.04M_⊕) and d (P = 46.859 days and M sin i = 16.7 ± 0.64M_⊕). ASTERIA was a technology demonstration CubeSat with an opportunity for science in an extended program. ASTERIA observations of HD 219134 were designed to cover the 3σ transit windows for planets f and d via repeated visits over many months. While TESS has much higher sensitivity and more continuous time coverage than ASTERIA, only the HD 219134 f transit window fell within the TESS survey's observations. Our TESS photometric results definitively rule out planetary transits for HD 219134 f. We do not detect the Neptune-mass HD 219134 d transits and our ASTERIA data are sensitive to planets as small as 3.6 R_⊕. We provide TESS updated transit times and periods for HD 219134 b and c, which are designated TOI 1469.01 and 1469.02 respectively

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Types, Regions, and Effects for Safe Programming with Object-Oriented Parallel Frameworks

    Get PDF
    Object-oriented frameworks can make parallel programming easier by providing generic parallel algorithms such as map, reduce, or scan, and letting the user fill in the details with sequential code. However, such frameworks can produce incorrect behavior if they are not carefully used, e.g., if a user-supplied function performs an unsynchronized access to a global variable. We develop novel techniques that a framework designer can use to prevent such errors. Building on a language (Deterministic Parallel Java, or DPJ) with an expressive region-based type and effect system, we show how to write a framework API that enables sound reasoning about the effects of unknown user-supplied methods. We also describe novel extensions to DPJ that enable generic types and effects --- essential for flexible frameworks --- while retaining soundness. Finally, we show how to make the reasoning modular: using any desired testing or verification technique, the framework author can guarantee noninterference subject to the API constraints; and the compiler can check the constraints to provide a noninterference guarantee for the entire user program. We evaluate our technique by using it to write two parallel frameworks and two realistic parallel algorithms.NSF grant CCF 07-02724NSF grant CNS 07-20772Microsoft and Intel through UPCRC Illinoisunpublishednot peer reviewe
    corecore